{xtd_wp_head}
Keywords: Biomaterials, Medical Devices
Reconstructive knee surgery; Alternative treatment
The proposed design is a variant of a stabilized total knee replacement used for reconstructive surgery. The device is predicated on hinged knee designs, but incorporates novel features that allow the user to selectively activate and deactivate a latch that locks the device in a position of full extension. The latch incorporates magnets, which allow the user to actuate the latch using an externally applied magnetic field, such as a handheld magnet. The latch is robust enough to resist bending at physiologically relevant loads. This allows the user to walk with a stiff leg gait when the device is locked in full extension. When the user unlocks the device, the user is able to flex the knee as desired or necessary. This reduces the movement of the leg when sitting or lying, increases mobility, and eliminates pain secondary to knee fusion, ultimately solving the problem of terminal knee extensor mechanism weaknesses that traditionally prevent patients from ambulating.
• TKR variant with a non-invasive, handheld, user-controlled extension lock, addressing knee dysfunction and arthrodesis complications
• Modular design to fit in existing platform TKR designs, providing simple incorporation of new technology
• Ability to lock the knee in extension, reducing the magnitude of the compressive joint reaction force and resulting in near-complete reduction of quadriceps forces
Validated Prototype
Utility
13/944/161; 13/944,606; 14/730,984
2012-084
John DesJardins, Eric Lucas, Kim Chillag, Frank Voss
Interested in this technology?
Contact curf@clemson.edu
Please put technology ID in subject line of email.
Contact
Stay up-to-date with the latest trends in the innovation and research industry. Sign up for our newsletter to see how CURF is making a difference and impacting the economy where we live.