{xtd_wp_head}
Keywords: Biomaterials, Medical Devices, Orthopaedics, Coatings
External fixation is a well-established orthopedic practice in which fractured bones or fusion sites are immobilized for healing by placing wires and/or pins into the bone on either side. Unfortunately, both superficial and deep tissue infections are prevalent with the use of external fixators, particularly Staphylococcal infections. The economic burden caused by treating such infections is expected to reach $1.6B annually by 2020. Though other antimicrobial coatings have been developed for use in orthopedics, the process required to insert the hardware into the patient exerts a tremendous shearing force, compromising the stability, longevity and efficacy of the product coating. Clemson researchers have engineered a mechanically-stable antibiotic coating that withstands insertion to disperse a consistent antibiotic dosage throughout the lifespan of the implant.
Alexey Vertegel
Christopher Gross
2017-059
Antimicrobial coating for orthopedics
This highly-adherent polyglycidyl methacrylate-based (PGMA) coating for external fixator hardware resists mechanical shearing and degradation over time, allowing for consistent dispersion of antibiotics at the implant site. The coating consists of a co-polymer of up to three polymers: PGMA, which is responsible for high adhesion to metal, polyoligoethyleneglycol methacrylate (POEGMA), which forms domains for incorporation of hydrophilic drugs, and polylauryl methacrylate (PLMA), which forms domains for incorporation of hydrophobic drugs. Both hydrophilic and hydrophobic drugs can be incorporated into PGMA-based films in much higher doses than during a simple drug adsorption. Use of PGMA-based coating allowed for prolonged drug release and increased the drug’s long-term storage stability. Such PGMAbased coatings remain stable on metal implants after application of considerable shear forces, which enables incorporation and sustained release for broad range of drugs, including antibiotics, anti-inflammatory drugs, growth factors, and many others.
In vitro pre-clinical studies completed
Provisional
62/613,830
2017-059
Dr. Alexey Vertegel & Dr. Christopher Gross
Interested in this technology?
Contact curf@clemson.edu
Please put technology ID in subject line of email.
Contact
Stay up-to-date with the latest trends in the innovation and research industry. Sign up for our newsletter to see how CURF is making a difference and impacting the economy where we live.