{xtd_wp_head}
Skip to content
About
Technology
Innovators
Students
Industry
Startups

Keywords: Textiles/Fibers, Laser

Market Overview

Optical fibers are enablers of a wide variety of modern technologies. However, during use, optical fibers heat up and their performance can subsequently change. This form of thermal dependence is especially problematic for high energy fiber laser and optical fiber sensor systems. Currently, the market for optical fiber sensors is projected to be $4 billion by 2017 and experience a growth rate of 20.3%. The addition of alumina to the silica fibers can mitigate the thermal effects of the fibers. However, conventional methods severely limit the addition of alumina to silica. In order to solve this problem and take advantage of the optimal market environment, Clemson University researchers have developed a novel process that uses a molten-core technique to add sapphire (Al2O3) to silica (SiO2) glass. Ultimately, this is an industry accepted and scalable manufacturing technique that allows for unstable glasses to be directly obtained in fiber form, creating an optical fiber that has a temperature independent acoustic spectrum. These fibers will substantially enable higher performance optical fibers and open the door to more market opportunities.
John Ballato
Peter Dragic

2012-082

Applications:

High energy fiber lasers; optical fiber sensors

Technical Summary:

Clemson University researchers have developed a molten-core technique to add sapphire (Al2O3) to silica glass. The addition of alumina to silica fibers greatly enhances the fiber’s immunity to selected optical non-linearities. The core material is able to melt the temperature in which the cladding glass draws into the fiber. The high quench rates permit previously unrealizable core compositions to be directly obtained in fiber form. This invention accomplishes the formation of an optical fiber whose acoustic (Brillouin) spectrum is temperature independent, a characteristic that has never been previously validated.

Advantages:

• Record low Brillouin scattering, eliminating one drawback of current high-powered systems by offering athermal acoustic Brillouin spectrum characteristics
• Low cost precursor materials, enabling scalability and competitive pricing for entry into new markets
• Utilizes a continuous process with high speed manufacturing that is compatible with existing commercial techniques, allowing for easy adaption and switch to this invention

Download Printable PDF

Technology Overview

State of Development

Validated Prototype

Patent Type

Utility

Category

Fiber and Films

Serial Number

14/245,448

CURF Reference No.

2012-082

Inventors

John Ballato, Peter Dragic


For More Info, Contact:

Interested in this technology?
Contact curf@clemson.edu
Please put technology ID in subject line of email.

Contact

Get Started
Ready to Get Started?

Contact our team at CURF

Contact CURF