Source-Agnostic Time-Domain Directional Relay (2024-026)

Novel time-domain directional protective relay designed to reliably detect grid faults regardless of the type of power source.

Market Overview
The power grid market has witnessed a surge in the integration of renewable energy resources (RERs) driven by growing environmental concerns and the pressing demand for sustainable energy solutions. Consequently, to meet this demand, there is an increased need for inverter-based resources (IBRs) as they are instrumental in facilitating integration of RERs into the power grid. However, IBRs exhibit unique fault characteristics significantly different from synchronous generators (SGs), posing challenges for traditional directional overcurrent relays. These challenges include limited fault currents, absence of negative sequence currents, and rapid changes in output voltage, making traditional phasor-domain relays unreliable.

Technical Summary
The proposed solution is a directional protective relay formulated in the time domain, eliminating the need for polarization techniques. This relay is designed to detect faults reliably regardless of the type of power source, whether IBRs or SGs. It is immune to decaying DC offsets and prefault currents, making it suitable for grids with up to 100% IBR penetration. The relay operates effectively at a sampling rate of 24 samples per cycle, facilitating its implementation in existing commercial numerical relays. Performance validation through PSCAD simulations demonstrates its superiority over current commercial relays.

Advantages
- **Universal Compatibility:** Functions reliably with both IBRs and synchronous generators.
- **Enhanced Reliability:** Immune to decaying DC offsets and prefault currents.
- **High Compatibility:** Easily integrates with existing commercial numerical relays.
- **Improved Fault Detection:** Superior performance in both transmission and distribution systems.
- **Regulatory Compliance:** Aligns with IEEE standards, ensuring future-proof protection solutions.

Applications
- **Renewable Energy Grids:** Protects transmission and distribution feeders with high penetration of IBRs.
- **Hybrid Systems:** Suitable for power systems incorporating both IBRs and traditional synchronous generators.
- **Microgrids:** Enhances protection in microgrids, ensuring stability and reliability.
- **Smart Grids:** Integrates seamlessly with smart grid infrastructure, enhancing overall grid resilience.

Development Stage
TRL 2/3
Source-Agnostic Time-Domain Directional Relay (2024-026) | 2

<table>
<thead>
<tr>
<th>App Type</th>
<th>Country</th>
<th>Serial No.</th>
<th>CURF Ref. No.</th>
<th>Inventors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provisional Patent Application</td>
<td>United States</td>
<td>63/559,243</td>
<td>2024-026</td>
<td>Dr. Sukumar Brahma</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Prabin Adhikari</td>
</tr>
</tbody>
</table>

About the Inventors

Dr. Sukumar Brahma
Dominion Energy Distinguished Professor of Power Engineering at Clemson University

Dr. Sukumar Brahma joined Clemson University as the Dominion Energy Distinguished Professor of Power Engineering in August 2018. His research, widely published and funded by the National Science Foundation, US Department of Energy, Utilities, and other government agencies has focused on different aspects of power system modeling, analysis, and protection. Dr. Brahma is a Distinguished Lecturer and a Fellow of the IEEE. Current research focus is on protection issues in integration of renewables with power systems and new paradigms in protection of smart grid, at both transmission and distribution levels.

Prabin Adhikari
Graduate Research Assistant in the Department of Electrical Engineering at Clemson University

Prabin Adhikari received the Bachelor of Engineering degree from Tribhuvan University in 2017 and the M.S. degree in electrical engineering from Clemson University in 2021. He is currently working toward a Ph.D. degree in electrical engineering at Clemson University. His research interests include the protection of inverter-dominated power grids, power system modeling, and adaptive relaying.

For more information on this technology contact: curf@clemson.edu

Please put technology ID “2024-026” in the subject line of the email.