Improved Purification and Control of Molecular Weight of Lignin (2014-078)

Acetic Acid used as a Renewable Solvent, Purifies and Controls the Molecular Weight of Lignin

Market Overview

This renewable solvent system consisting of hot acetic acid-water mixtures can simultaneously purify, fractionate, and solvate lignins. This approach to purifying and controlling the molecular weight of lignin improves the pulping process and its output. Previous processes can be expensive and have poorly controlled molecular or chemical properties. Using traditional methods, less than 0.2 percent of the 50 million tons/yr of Kraft lignin is recovered for use in value-added products because of high ash content and poorly controlled molecular and chemical properties. Clemson University researchers have developed a hot acetic-water solvent system that can obtain ultra-pure lignin (UPL). This unique, multifunctional method for solvation will enables direct processing of lignin into microstructure-controlled, high performance carbon fibers and coatings. This form of ultra-pure lignin has potential to replace petroleum-derived polymers in a wide variety of applications.

Technical Summary

This approach uses a renewable solvent system that can simultaneously purify, fractionate and solvate lignins. The process operates at an elevated temperature in the presence of the hot acetic acid-water mixture, making the formation of a liquefied lignin phase. A key element of this process is tuning the compositions of the solvent system so as to split the lignin into two phases, a solvent-rich and a lignin-rich phase. This phase split is the key to the highly versatile purification, fractionation/molecular weight control, and solvation of the lignin. The ultra-pure lignins produced have broad potential use as carbon fiber.
Improved Purification and Control of Molecular Weight of Lignin (2014-078)

<table>
<thead>
<tr>
<th>App Type</th>
<th>Country</th>
<th>Serial No.</th>
<th>Patent No.</th>
<th>CURF Ref. No.</th>
<th>Inventors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utility</td>
<td>United States</td>
<td>14/945,846</td>
<td>10,053,482</td>
<td>2014-078</td>
<td>Mark Theis, Adam Klett,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>David Bruce</td>
</tr>
</tbody>
</table>

About the Inventors

Dr. Mark Thies
Dow Chemical Professor of Chemical and Biomolecular Engineering

Dr. Mark Thies is the Dow Chemical Professor of Chemical and Biomolecular Engineering at Clemson University. He earned his Ph.D. in Chemical Engineering from the University of Delaware. Prior to joining Clemson, he held appointments as a Humboldt Research Fellow at Technical University Hamburg-Harburg, and the Marie Curie Fellow at National Technical University of Athens (Greece). He is the author of over 70 refereed journal publications, holds three patents, and has directed over $10 million in externally funded research. His research interest include separations, thermodynamics, and supercritical fluids.

Dr. David Bruce
Department Chair and Professor of Chemical Engineering

Dr. David Bruce is a professor and the Department Chair of Chemical Engineering at Clemson University. He earned his Ph.D. from Georgia Institute of Technology. His research interests include catalysis, kinetics, mass transfer, and molecular modeling.

For more information on this technology contact:

Andy Bluvas
Technology Commercialization Officer

E: bluvasa@clemson.edu
P: (864) 656-5157

curf.clemson.edu